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Abstract
The heat and mass transfer due to the steady laminar and incompressible micropolar fluid flow through a rectangular 
duct with the slip flow and convective boundary conditions are numerically calculated. The fluid moves under an exter-
nal magnetic field applied on a plane perpendicular to the axis of the duct. The governing nonlinear partial differential 
equations of momentum, microrotation, induction, and the energy are solved simultaneously by the finite difference 
method. The effect of various numbers and parameters such as Reynolds, magnetic Reynolds, Hartmann, coupling, 
Brinkman numbers, the slip flow and convective parameters are presented in graphs. Some comparisons with previous 
works are included.
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1 Introduction

In the last years, several investigators have studied the 
fluid flow and heat transfer inside a rectangular duct 
which has received considerable attention in engineer-
ing applications. This type of fluid flow is observed in 
several mechanical types of the equipment and the heat 
exchangers. Eringen [1–3] studied the theory of general-
ized continuum configuration of micropolar fluids which 
exhibit the microrotational effects and microrotational 
inertia. Subba et al. [4] studied the nonsimilar boundary-
layer solutions for mixed convective micropolar fluid flow 
around a rotating cone, they provided the microrotation 
boundary conditions and their influence on the gyration, 
velocity, and heat transfer fields. Vantieghem [5] used the 
numerical simulation for steady flows of both laminar and 
turbulent in the quasi-static MHD flow through a toroidal 

duct of square cross-section with insulating Hartmann and 
conducting sidewalls, they presented a comprehensive 
analysis of the secondary flow and a comparison between 
MHD and hydrodynamic flows. Chou et al. [6] used the 
numerical solutions for combined free and forced lami-
nar convection through a horizontal rectangular duct by 
a vorticity-velocity method, the walls are heated with a 
uniform heat flux without the assumptions of the small 
Grashof number and large Prandtl number. The numeri-
cal study of Aung et al. [7] made a combination between 
the free and forced laminar convection through vertical 
parallel plates with asymmetric wall heating at the uniform 
heat flux (UHF). Mahaney et al. [8] used a numerical tech-
nique to solve the momentum and energy equations and 
studied the effects of buoyancy-induced secondary fluid 
flow on forced flow with uniform bottom heating through 
a horizontal rectangular duct. Huang et al. [9] investigated 
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numerically the mixed convection heat and mass transfer 
with film evaporation and condensation along the wetted 
wall with different temperatures and aspect ratios through 
the vertical ducts. Sayed et al. [10] investigated the laminar 
fully developed MHD flow and heat transfer of a viscous 
incompressible electrically conducting of a Bingham fluid 
in a rectangular duct, they took into consideration the con-
stant pressure gradient, external uniform magnetic field 
and Hall effect. Rarnakrishna et al. [11] investigated the 
laminar natural convection of air for constant tempera-
ture and constant heat flux through a vertical square duct 
opened at both ends, they assumed that the velocity of 
air entering at the bottom of the duct is uniform at atmos-
pheric pressure. Abd-Alla et al. [12] studied numerically the 
effect of magnetic field, rotation and initial stress on the 
motion of a micropolar fluid through a circular cylindri-
cal flexible tube with small values of amplitude ratio, they 
considered that the wall properties is elastic or viscoelastic. 
Srnivasacharya et al. [13] investigated the steady flow of 
an incompressible and electrically conducting micropolar 
fluid flow with Hall and ionic effects in a rectangular duct, 
the government partial differential equations are solved 
numerically by the finite difference method. Pandey et al. 
[14] studied analytically the MHD flow of a micropolar fluid 
through a porous medium by sinusoidal peristaltic waves 
moving down the channel walls, the low Reynolds number 
and long wavelength approximations are applied to solve 
the nonlinear problem. Janardhana et al. [15] investigated 
numerically the thermal radiation heat transfer effect on 
the unsteady MHD flow of micropolar fluid over a uni-
formly heated vertical hollow cylinder using Bejan’s heat 
function concept. Ayano et al. [16] investigated numeri-
cally of mixed convection flow through a rectangular duct 
under the transversely applied magnetic field with at least 
one of the sidewalls of the duct being isothermal, the gov-
erning differential equations have been transformed into 
a system of nondimensional differential equations and are 
solved numerically such as the velocity, temperature, and 
microrotation component profiles are displayed graphi-
cally. Miroshnichenko et al. [17] investigated numerically 
the laminar mixed convection of micropolar fluid through 
a horizontal wavy channel by the finite difference method, 
they solved the system of equations of dimensionless 
stream function, vorticity and temperature then, stud-
ied the effects of Reynolds, Rayleigh, Prandtl numbers, 
vortex viscosity parameter and undulation number onto 
streamlines, isotherms, vorticity isolines as well as hori-
zontal velocity and temperature profiles. Shit et al. [18] 
investigated the effect of the slip velocity on the peristaltic 
transport of a physiological fluid through a porous non-
uniform channel under low-Reynolds number and long 
wavelength, the flow characteristics of incompressible, 
viscous, electrically conducting micropolar fluid has been 

derived analytically. Bhattacharyya et al. [19] investigated 
the combined influence between magnetic field and its 
dissipation on convective heat and mass transfer of a vis-
cous chemically reacting fluid in the concentric cylindri-
cal annulus, the inner cylinder is maintained at constant 
temperature and concentration while, the outer cylinder 
is maintained under constant heat flux. Sheremet et al. 
[20] investigated numerically the natural convection of 
a micropolar fluid in the triangular cavity, the system of 
micropolar equations of dimensionless stream function, 
vorticity and temperature have been solved by the finite 
difference method of the second-order accuracy under the 
initial and boundary conditions. Gupta et al. [21] studied 
numerically for the steady mixed convection (MHD) flow 
of micropolar fluid over a porous shrinking sheet, they 
assumed that the magnetic field and velocity of shrinking 
sheet are varied as a power functions of the distance from 
the origin. All the above studies are on the fluid flow and 
heat transfer under the magnetic field effect.

Our effort in this paper is dedicated to study the behav-
ior of the micropolar fluid under the effect of induced mag-
netic fields. The micropolar fluid is flowing through a rec-
tangular duct subjected to an applied magnetic field with 
the inclusion of both the effects of the induced magnetic 
field and the slip conditions.

2  The physical problem and mathematical 
modeling

Consider the steady laminar and incompressible flow of an 
electrically conducting micropolar fluid moving through 
a rectangular duct at a constant pressure gradient �P∕�Z 
under transverse external magnetic flux density B0 applied 
in the X-direction. The fluid flow is generated due to the 
pressure gradient along the Z-direction of the duct. Choos-
ing the coordinate system along the Z-axis to be the length 
of the duct and (X and Y) axis to be the cross-sectional 
area of the duct, as in Fig. 1. Each wall of the duct is kept 
at a uniform temperature ( Tw ). Assume that the slip flow 
condition for the velocity in the walls is parallel to X-axis 
and the slip convective conditions are applied to the walls, 

Fig. 1  Geometrical model of the duct flow
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which is parallel to Y-axis. Assuming that the velocity vec-
tor of the micropolar fluid is 

⇀

V = Vz(X , Y)
⇀

k and the micro-
rotation vector ⇀� = �x(X , Y)

⇀

i + �y(X , Y)
⇀

j  . The fluid has a 
large magnetic Reynolds number ( Rm ) so that the induced 
magnetic field is produced significantly inside the fluid.

The governing equations
The governing equations in a dimension of the flow of 

an incompressible and electrically conducting micropolar 
fluid [2] with the induced magnetic field and without of 
body force and body couple are

Continuity equation

(1)
��

�t
+ ∇ ⋅ (�

⇀

V ) = 0

Momentum equation

Microrotation equation

Energy equation

where � , P and T  are the fluid density, fluid pressure and 
temperature, respectively with j∗,Kf  , Cp , � are the microgy-
ration parameter, thermal conductivity, specific heat at 
constant pressure and the electrical conductivity, 

(2)�
D

⇀

V

Dt
= −∇P − (� + k)∇ × ∇ ×

⇀

V + k∇ ×
⇀

� +
⇀

J ×
⇀

B

(3)

𝜌j∗
D

⇀

𝜔

Dt
= k∇ ×

⇀

V − 2k
⇀

𝜔 − 𝛾∇ × ∇ ×
⇀

𝜔 + (�̃� + 𝛽 + 𝛾)∇
(
∇ ⋅

⇀

𝜔

)

(4)
𝜌Cp

DT

Dt
= Kf∇

2T + 𝜆

(
∇ ⋅

⇀

V

)2

+ 2𝜇(D ∶ D) + 4k

(
1
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∇ ×
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(
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(
∇
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(
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𝜔
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(
∇

⇀

𝜔

)
∶
(
∇

⇀

𝜔

)T

+

⇀

J
2

𝜎

respectively, while D is the deformation tensor (
D = 0.5

(
⇀

Vij +
⇀

Vji

))
 , 
⇀

J is the electric current density vec-

tor, ⇀B is the total magnetic field 
⇀

B =

(
B0

⇀

i + Bz(X ,Y)
⇀

k

)
 and 

Bz is the induced magnetic field and 𝜇, k, �̃�, 𝛽 and � are the 
material constants (viscosity coefficients) which are satisfy-
ing the following inequalities;

The induction equation, Ohm’s law and Maxwell’s equa-
tions related to the magnetic field ⇀B , electric current den-
sity 

⇀

J and electric field density vector ⇀E are given by;

where μm is the magnetic permeability. Due to that the 
system does not apply polarization voltage (each wall is 
an electrical insulator), the electric field density vector ⇀E is 
neglected. Under the above assumptions, the MHD equa-
tions become

Induction equation

(5)k ≥ 0, 2𝜇 + k ≥ 0, 3�̃� + 𝛽 + 𝛾 ≥ 0, 𝛾 ≥ |𝛽|

(6)�
⇀

B

�t
= ∇ ×

(
⇀

V ×
⇀

B

)
+

1

��m

∇2
⇀

B,
⇀

J = �

(
⇀

E +
⇀

V ×
⇀

B

)
, ∇ ⋅

⇀

E = 0, ∇ ×
⇀

B = �m

⇀

J , ∇ ×
⇀

E =
�

⇀

B

�t
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⇀

B = 0

(7)B0

[
�Vz

�X

]
+

1

��m

[
�2Bz

�X2
+

�2Bz

�Y2

]
= 0,

Momentum equation

Microrotation equation in X-direction

Microrotation equation in Y-direction

(8)

−
[
�P

�Z

]
+ (� + k)
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+
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]
+ k
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��y
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�X

]
= 0,

(9)−2k𝜔x + k
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Energy equation

The boundary conditions are classified as follows [22];

(11)

kf

[
𝜕2T
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+
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)2

+ 2

(
𝜕𝜔x

𝜕Y
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+
1

𝜎𝜇2
m

(
𝜕2Bz

𝜕X2
+

𝜕2Bz
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)
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(12a)
B = 0, Vz = 0, �x = 0, �y = 0 at X = 0 and X = a;

(12b)kf
dT

dX
− h

(
T − Tf

)
= 0 at X = 0;

(12c)kf
dT

dX
+ h

(
T − Tw

)
= 0 at X = a;

(12d)
B = 0, T = Tw , �x = 0, �y = 0, at Y = 0 and Y = b;

(12e)Vz = �∗
dVz

dY
at Y = 0;

where Tf  is the initial temperature of the fluid, while �∗ 

and h are the slip flow coefficient and the slip convection 
coefficient, respectively. The dimensionless variables are 
introduced as follows;

Substituting the Eqs. (13) into Eqs. (7)–(11), we get;

(13)

x =
X

a
, y =

Y

a
, v =

Vz

V0
, �1 =

�xa

V0
,

�2 =
�ya

V0
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, B =

Bz
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�P

�Z
= −

�V2

0

a
Pl .

(14)
[
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]
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1
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�2B

�x2
+

�2B

�y2

]
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(12f )Vz = �∗
dVz

dY
at Y = b;

where m2 =
a2k(2𝜇+k)

𝛾(𝜇+k)
,A =

�̃�

𝜇a2
 and C =

�

�a2
 are the micropo-

lar parameters, N =
k

�+k
 is the coupling number, l2 = 2a2k
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is dimensionless parameter, Re = �V0a∕� is the Reynolds 
number, Rm = ��mV0a is the magnetic Reynolds number, 
Ha = B0a

√
�∕� =

√
ReRm∕Al

2  is the Hartmann number, 

Al = V0∕
√

B2
0
∕�m� is the Alfven number, Br =

�V2

0

kf (Tf−Tw)
 is 

the Brinkman number and the inverted pressure gradient 
Pl = 1∕

(
�P

�Z

)
.

The boundary conditions in dimensionless form are.

(19a)
B = 0, v = 0, �1 = 0, �2 = 0 at x = 0 and x = 1;

(19b)
d�

dX
− Bi(� − 1) = 0 at x = 0;

(19c)
d�

dX
− Bi� = 0 at x = 1;

(19d)
B = 0, � = 0, �1 = 0, �2 = 0, at y = 0 and y = yo;

where yo =
b

a
 is the aspect ratio, � =

�∗

a
 is the slip flow 

parameter and Bi = ah

kf
 is the slip convection parameter.

3  Results and discussion

In this study, the mass and heat transfer of the MHD of 
a micropolar fluid through a rectangular duct have been 
solved numerically by the finite difference method with 
41 × 41 mesh points in both directions. The dimensionless 
temperature Eq. (18) and the coupled induction, velocity 

(19e)v = �
dv

dy
at y = 0,

(19f )v = �
dv

dy
at y = yo;

Fig. 2  3-Dimensional profiles of a velocity, b magnetic field, c microrotation in x-direction, d microrotation in y-direction, e temperature
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and microrotation Eqs. (14)–(17) are solved subject to the 
boundary conditions (19a)–(19f ). The effect of various 
parameters Rm , Re , Ha , N , � , Bi and Br are presented graphi-
cally. Figure 2 show the profiles of the velocity, magnetic 
field, microrotation in x- and y-directions and temperature 
at Rm = 10, Re = 4, Ha = 5, N = 0.4, � = 0.1, Bi = 1, Br = 1, Pl = 1, 
m = 1, l  = 0.5, A = 1 and C = 0.1. It is clear from Fig. 2a that 
the maximum magnitude of the velocity at the center and 
decreases at the boundaries of the duct [13]. In Fig. 2b, 
it is observed that the maximum value of the induced 

magnetic field inside the fluid between the vertical bound-
aries and the center of the duct, and equal zero at both 
of the center and the boundaries of the rectangular duct.

It is clear from Fig. 2c that the maximum values of the 
microrotation ( �1 ) are situated between the horizontal 
boundaries and the center of the duct, and it is zero at each 
wall of the duct. But at the center, the value is approach-
ing zero. Also, it is observed that the rotation in the region 
below the center of the duct in the positive x-direction. 
But above the center, it rotates in the negative x-direction, 

Fig. 3  The profiles of a velocity, b magnetic field, c microrotation in y-direction, d microrotation in x-direction, e, f temperatures in x and y 
with various values of R

m
 at the centerline of the duct

Fig. 4  The profiles of a velocity, b magnetic field, c microrotation in x-direction, d microrotation in y-direction, e, f temperatures in x and y 
with various values of R

e
 at the centerline of the duct
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while the coupling between the rotational and Newtonian 
viscosity is represented by the coupling number N . The 
vanishing to zero in the figures of microrotation means 
that the fluid is non-polar and the micropolarity is lost 
( k → 0 and N → 0). In Fig. 2d it is shown that the values of 
microrotation(�2 ) are maximum between the vertical walls 
and the center of the duct, but at the center, the value 
is approaching zero and tends to zero at the walls of the 
duct. Also, it is observed that the fluid rotates in the nega-
tive y-direction at the left region of the duct. But in the 

right region, it rotates about the positive y-direction [13, 
16]. Figure 2e presents the maximum magnitude of tem-
perature along x-axis at the center of the left vertical wall 
and decreasing at the center of the duct, it increases by a 
smaller rate when approaching to the center of the right 
vertical wall, while the maximum value of temperature 
along y-axis at the center and the rate is decreased when 
it is near to the horizontal walls. The profiles of velocity in 
Fig. 3a, magnetic microrotations in Fig. 3c, d and tempera-
tures Fig. 3e, f decrease with the increase of the magnetic 

Fig. 5  The profiles of a velocity, b Microrotation in x-direction, c microrotation in y-direction, d, e temperatures in x and y and f magnetic 
fields with various values of Ha at the centerline of the duct

Fig. 6  The profiles of a velocity, b Microrotation in x-direction, c microrotation in y-direction, d, e temperatures in x and y and f magnetic 
fields with various values of N at the centerline of the duct
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Fig. 7  The profiles of a velocity, b magnetic field, c microrotation in x-direction, d microrotation in y-direction, e temperatures in y direction 
with various values of � at the centerline of the duct

Fig. 8  The profiles of a temperatures in x direction and b in y direction with various values of Br at the centerline of the duct

Fig. 9  The profiles of a temperatures in x-direction and b in y-direction with various values of Bi at the centerline of the duct
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Reynolds number in the entire rectangular duct, while the 
profiles of the induced magnetic field in Fig. 3b increase 
when the increase of the magnetic Reynolds number. 
Figure 4 show; the velocity (a), microrotations (c) and (d), 
induced magnetic field (b) and temperature profiles (e) 
and (f ) are increased with increase Reynolds number. 

Figure 5 show; the velocity (a), microrotations (b) and (c) 
decrease with the increase of the Hartmann number but, 
the induced magnetic field is increasing the delay the flow 
(decrease the velocity) compared with that occurred in 
[13]. Also, the induced magnetic field in Fig. 5f and temper-
ature in Fig. 5d, e decrease with the increase of the Hart-
mann number. Figure 6 show; the velocity (a), microrota-
tions (b) and (c) decrease with the increase of the coupling 
number but, the induced magnetic field causes to increase 
the delay the flow (decrease the velocity) compared with 
that occurred in [13]. Also, the induced magnetic field in 
Fig. 6f and temperature in Fig. 6d, e decrease with the 
increase in the coupling number. Figure 7a, d show the 
velocity and microrotation in y-direction are increased 
with the increase of the slip flow, but Fig. 7b, c, e show the 
induced magnetic field, microrotation in x-direction and 
temperature decrease with increase the slip flow.

Figure  8 present that the profile of temperature 
increases with increased the Brinkman number in both 
directions. It is clear that the Brinkman number does not 
exist in Eqs. (14), (15), (16) and (17) so that each of the 
velocity, microrotations and induced magnetic field do 
not enter into a discussion of Brinkman number. Figure 9 
present that the profile of temperature increases with 
increase slip convection parameter. But does not exist in 
each Eqs. (19a), (19c) and (19d) so that each of the velocity, 
microrotations and induced magnetic field do not enter 
into a discussion of the slip convection parameter.

4  Conclusion

In this article, we presented the effect induced magnetic 
field into the micropolar fluid. Numerical method is used 
to solve the MHD equations concerning the mass and 
heat transfers of the steady, incompressible micropolar 
fluid through a rectangular duct with the effect of the 
induced magnetic field and slip conditions. The analysis 
of the micropolar fluid flow and heat transfer have been 
conducted by the various values of the magnetic Reynolds, 
Reynolds, Hartmann, coupling and Brinkman numbers, slip 
flow and convection parameters. Based on the obtained 
results, we can conclude that:

• The velocity increases with the increase Reynolds 
number and slip flow parameter, but decreases with 
the increase in magnetic Reynolds, Hartmann and cou-

pling numbers. It is not affected by the slip convection 
parameter and Brinkman number.

• The induced magnetic field increases with the increase 
of Reynolds and magnetic Reynolds numbers, but 
decreases with the increase of Hartmann, coupling 
numbers and the slip flow parameter. It is not affected 
by the slip convection parameter and Brinkman num-
ber.

• The microrotation in x-axis increases with the increases 
of Reynolds number, but decreases with the increase in 
magnetic Reynolds, Hartmann, coupling numbers and 
the slip flow parameter. It is not affected by the slip 
convection parameter and Brinkman number.

• The microrotation in the y-axis increase with the 
increases of Reynolds number and the slip flow param-
eter, but decreases with the increase of magnetic 
Reynolds, Hartmann and coupling numbers. It is not 
affected by the slip convection parameter and Brink-
man number.

• The temperature increases with the increase of Reyn-
olds, Brinkman numbers and the slip convection 
parameter, but decreases with the increase of magnetic 
Reynolds, Hartmann, coupling numbers and the slip 
flow parameter.
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